Конечные узлы Fibre Channel взаимодействуют непосредственно друг с другом и не создают сеансовых подключений к промежуточным узлам.

Устройства не “подозревают” о коммутаторе связной архитектуры и концентраторе. Конечно, при этом коммутаторы и концентраторы обмениваются пакетами управления потоком с этими устройствами.

Механизм управления потоком требует, чтобы передающий порт не отправлял кадры быстрее, чем принимающий порт может их обработать. Порты Fibre Channel имеют буфера для временного хранения кадров и последующей их обработки. Под обработкой подразумевается отправка кадра на другой порт или передача кадра протоколу более высокого уровня. Схема управления потоком, которая используется в Fibre Channel, очень напоминает протокол плавающего окна в TCP/IP. Размер окна, представляющий собой количество кадров, которые можно отправить без подтверждения их приема, устанавливается сторонами обмена заранее. При этом согласованное значение не может быть изменено. Для каждого отправленного кадра размер окна уменьшается на единицу, а для каждого подтвержденного кадра - увеличивается на единицу. Управление потоком может осуществляться одним из двух способов: “точка-точка” или “буфер-буфер”. При этом требуется совместное использование обоих методов.

Управление потоком по схеме “точка-точка” осуществляется между двумя конечными точками: источником данных (например, сервером) и получателем данных (например, жестким диском). Управление потоком “точка-точка” проводится между двумя портами типа N (между ними могут находиться промежуточные узлы). Два порта типа N регистрируют друг друга, в процессе чего каждый порт выделяет для себя определенное количество буферов у другого порта. Это количество называется резервированием буфера. Отправитель может отправлять количество кадров, не превышающее это значение. Получатель отправляет кадр АСК (позитивное подтверждение) для каждого успешно полученного и обработанного кадра, а отправитель при получении кадра АСК может увеличить значение резервирования (credit count) на единицу для каждого полученного кадра АСК. Получатель может подтвердить успешное получение нескольких кадров или даже целой последовательности и получатель должен будет, не ожидая подтверждения для каждого кадра в отдельности, увеличить количество кадров, которое можно отправлять. .

Управление потоком по схеме “буфер-буфер" выполняется между двумя соседними узлами, которые представляют собой промежуточные узлы или находятся между конечным и промежуточным узлом. Таким образом, управление потоком от буфера к буферу выполняется между портами типа N или между портом F и портом N. Как уже отмечалось, порты обменивают-г ся данными, указывающими на количество буферов, зарезервированных для каждого узла. Эти значения могут отличаться, например один порт может выделить два буфера, а второй - четыре буфера. Получение кадра подтвер ждается кадром Receiver Ready, а не кадром АСК как в управлении потоком “точка-точка”.

4.6.3.6 Протоколы FC-2

В стандартах Fibre Channel определены протоколы для управления передачей данных и линией связи. Кроме того, описаны дополнительные стандарты для поддержки протоколов более высокого уровня, применяемых на уровне FC-4. Эти протоколы описаны ниже.

■ Протокол Fabric Login, который определяет обмен параметрами меж ду портом и коммутатором связной архитектуры. Протокол и служба Fabric Login более подробно описываются в разделе 4.4.3.6. •

■ Протокол Port Login, требующий, чтобы независимо от топологии (“точка-точка”, кольцо с разделением доступа или коммутируемая связная архитектура) два порта проводили взаимную регистрацию перед подключением друг к другу. Взаимная регистрация выполняется с помощью специального кадра PL0GI. С помощью протокола Port Login обеспечивается использование двух важных функций.

• Возможность получения информации о порте N, на котором выполняется регистрация. К такой информации относится описание классов обслуживания, поддерживаемых портом N.

• Инициализация буфера резервирования для управления потоком “точка-точка”. Обратите внимание, что в контексте прямого подключения управление потоком “точка-точка” ничем не отличается от управления потоком “буфер-буфер”.

■ Протокол Data Transfer, определяющий, как данные протокола верхнего уровня (уровня FC-4) передаются с помощью схем управления потоком, описанных в разделе 4.6.3.5.

■ Протокол Arbitrated Loop, который определяет методы инициализации и управления кольцом.

4.6.3.7 Классы обслуживания FC-2

Интерфейс Fibre Channel проектировался для обеспечения различных способов передачи данных. Ряд служб отличается такими характеристиками:

■ тип сервисного подключения, т.е. аналогично TCP или без установки подключения, как в UDP;

■ поддержка многоабонентской доставки (multicast);

■ поддержка уведомления о доставке или невыполненной доставке;

■ поддержка гарантированной доставки кадров в том же порядке, в котором они были отправлены;

■ тип предоставляемых служб, например резервирование пропускной способности для соединения, если служба ориентирована на соединение;

■ тип механизмов управления потоком данных.

Для предоставления широкого диапазона вариантов передачи данных, определено неколько классов обслуживания.

■ Тип Class 1 определяет выделенное подключение, подобное подключению TCP/IP. Как и в TCP, Class 1 гарантирует, что кадры доставляются в той же последовательности, в которой они были отправлены. Тип Class 1 используется при передаче больших объемов данных, когда время, потраченное на установку соединения, на порядок меньше времени, необходимого для передачи данных. «

■ Тип Class 2 определяет обслуживание без подключения (по аналогии с дейтаграммами), при котором кадры потенциально могут быть доставлены не в той последовательности, в которой они отправлялись (что подразумевает смену последовательности кадров протоколом более высокого уровня). Как и в случае использования сетевых протоколов, обслуживание Class 2 имеет смысл тогда, когда объем передаваемых данных достаточно мал и накладные расходы на установку соединения сравнимы с расходами на передачу самих данных. Получатель кадра Class 2 должен'отправить подтверждение при получении кадра.

■ Тип Class 3 также подразумевает обслуживание без установки подключения. Основное отличие от Class 2 состоит в том, что подтверждать успешное получение кадра нет необходимости. Это сравнимо с дейтаграммами IP, метод использования которых иногда в шутку называется “отправь и молись”.

■ Тип Class 4, который также называется Intermix, является необязательным классом обслуживания. Класс гарантирует определенную пропускную способность кадрам Class 1, а оставшаяся пропускная способность используется для кадров Class 2 и Class 3;

■ Тип Class 6 представляет собой однонаправленное, ориентированное на подключение обслуживание с предоставлением возможности многоабонентской доставки (Class 5 зарезервирован).

В табл. 4.4 собрана вся информация о классах обслуживания Fibre Channel.

Обратите внимание, что большинство поставщиков поддерживают классы 1, 2 и 3. В то же время некоторые поставщики поддерживают только классы, не ориентированные на соединение (Class 2 и Class 3).

Таблица 4.4. Классы обслуживания Fibre Channel

Class 1 Class 2 Class 3 Class 4 Class 6
Тип Ориентирован на Не поддерживает Не поддерживает Ориентирован на Ориентирован на
обслуживания подключение подключение подключение подключение подключение
Поддержка Нет Нет Да Нет Да
многоабонентской
доставки
Подтверждение Нет Нет Да Нет Да
доставки
Использование Полное Не Не Частичное Не
пропускной гарантируется гарантируется гарантируется
способности
Управление Точка-Точка Точка-Точка Буфер-Буфер Буфер-Буфер Точка-Точка
потоком -
Доставка кадров Гарантируется Порядок может Порядок может Гарантируется Гарантируется
нарушаться нарушаться

4.6.3.4 обмен fibre channel | Системы хранения данных в Windows | 4.6.4 уровень fc-3


Системы хранения данных в Windows



Новости за месяц

  • Апрель
    2020
  • Пн
  • Вт
  • Ср
  • Чт
  • Пт
  • Сб
  • Вс
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31