Эта группа приборов использует физические свойства среды, в которой может размещаться закладное устройство, или свойства элементов закладных устройств, независимые от режима их работы.

Так как в пустотах сплошных сред (кирпичных и бетонных стенах, деревянных конструкциях и др.) могут устанавливаться долговременные дистанционно-управляемые закладные устройства, то выявление и обследование пустот проводится при «чистке» помещений.

В простейшем случае пустоты в стене или любой другой сплошной среде обнаруживаются путем их простукивания. Пустоты в сплошных средах изменяют характер распространения структурного звука, в результате чего воспринимаемые слуховой' системой человека спектры звуков в сплошной среде и в пустоте отличаются.

Технические среДства обнаружения пустот позволяют повысить достоверность выявления пустот. В качестве таких средств могут применяться как различные ультразвуковые приборы, в том числе медицинского назначения, так и специальные обнаружители пустот. Специальные технические средства для обнаружения пустот используют:

• отличия в значениях диэлектрической проницаемости среды и пустоты;

• различия в значениях теплопроводности воздуха и сплошной среды:

• отражения акустических волн в ультразвуковом диапазоне от границ раздела «твердая среда - воздух»).

В пустоте (воздухе) диэлектрическая постоянная близка к единице, для бетона, кирпича, дерева она значительно больше. Диэлектрики с разными значениями диэлектрической постоянной по-разному деформируют электрическое поле, создаваемое обнаружителем пустоты. По изменению диэлектрической индукции локализуется пустота. Так обнаружитель пустот «Кайма» выявляет полости в кирпичных или бетонных стенах размером 6 х 6 х 12 см и 6 х 6 х 25 см.

С помощью ультразвукового томографа Д 1230 обнаруживаются пустоты объемом от 30 см3 на глубине до 1 м, ультразвукового толщинометра Д 1220 - глубиной до 50 см.

Эффективным средством выявления пустот в стенах, нагретых на несколько градусов выше температуры воздуха в помещении, являются тепловизоры. Чувствительность охлаждаемых тепловизоров достигает 0,01 градуса по Цельсию, неохлаждаемых - на порядок хуже. За счет разницы теплопроводности бетона или кирпича стен и воздуха границы пустот с воздухом при нагревании или охлаждении помещения могут наблюдаться на экране тепловизора.

Переносной неохлаждаемый тепловизор ТН-3 («Спектр») со встроенным цифровым процессором обеспечивает возможность наблюдения на экране изображений в ИК-диапазоне (8-13 мкм) объекта при минимальной разности температуры элементов его поверхности 0,15 град. Комплект тепловизора содержит камеру размером 110 х 165 х 455 мм и массой 6 кг, малогабаритный монитор и блок питания.

Металлодетекторы обнаруживают закладные устройства по магнитным и электрическим свойствам их элементов. Любая закладка содержит токопроводящие элементы: резисторы, индуктивности, соединительные токопроводники в навесном или микроминиатюрном исполнении, антенну, корпус элементов питания, металлический корпус закладки.

По принципу действия различают параметрические (пассивные) и индукционные (активные) металлодетекторы. По конструкции - стационарные и ручные. Для обнаружения малых токопроводящих элементов применяют в основном ручные металлодетекторы, которые можно приблизить вплотную к токопроводящему элементу.

В параметрических металлодетекторах токопроводящие элементы, попадающие в зону действия поисковой рамки (катушки) диаметром 250-300 мм, изменяют ее индуктивность. Эта катушка является индуктивностью колебательного контура поискового генератора, частота колебаний которого составляет 50-500 кГц. Чем выше частота колебаний генератора, тем больше отклонение частоты генератора, т. е. тем выше чувствительность металлодетектора, Но одновременно сильнее сказывается влияние среды, особенно грунта земли. Поэтому в некоторых типах металлодетектора поисковую катушку запитывают негармоническим сигналом с частотой 15-50 кГц, а для измерения отклонения частоты используются гармоники колебания на частотах 500-1000 кГц.

Для измерения отклонения частоты колебаний генератора параметрического металлодетектора широко применяется метод «биений» - явления, возникающего при сложении двух колебаний с близкими частотами. Одно колебание с изменяющейся частотой создается поисковым генератором, другое - эталонным генератором со стабилизированной частотой. Частоты этих колебаний устанавливаются равными при отсутствии в зоне действия поисковой рамки посторонних предметов. Частота биений поступает в виде тональной частоты на наушники и световой индикатор. По частоте тона звукового сигнала и миганий светового индикатора можно локализовать область, внутри которой находится металлический предмет.

Достоинством параметрических металлодетекторов является их магнитная селективность - способность разделять металлы по магнитным свойствам. Известно, что черные металлы (чугун, сталь, кобальт, сплавы) имеют удельную магнитную проницаемость ц» 1. У цветных парамагнитных металлов (титана, алюминия, олова, платины и др.) этот показатель незначительно больше 1, у диамагнитных металлов (золота, меди, серебра, свинца, цинка и др.) - незначительно меньше 1. Следовательно, по знаку и величине отклонения частоты поискового генератора от номинального (нулевого) значения можно судить о типе попавшего в зону действия рамки металлического предмета. Эта возможность расширила область применения ручных металлодетекторов, в том числе для поиска кладов, и активизировало исследования по их совершенствованию в середине 90-х годов XX в.

Однако чувствительность пассивных параметрических металлодетекторов недостаточна для обнаружения находящихся в неоднородной среде металлических предметов. Глубину обнаружения увеличивают в индукционных металлодетекторах. В них с помощью специального генератора и излучающей поисковой рамки (катушки) создают магнитное поле. Оно индуцирует в токопро водящих предметах вихревые токи, создающие вторичное поле. Это поле принимается другой, измерительной, катушкой металло-детектора. Наводимый в нем сигнал фильтруется, обрабатывается, усиливается и подается на звуковой и световой индикатор ме-таллдетектора.

Различают аналоговые и импульсные индукционные метал-лодетекторы. В аналоговых металлодетекторах на поисковую катушку поступает от генератора гармонический сигнал с частотой 3-20 кГц. В импульсных металлодетекторах удается за счет мощного короткого импульса, подаваемого в поисковую катушку, сформировать магнитное поле с напряженностью 100-1000 А/м, на порядок превышающей напряженность поля аналогового металлоде-тектора и проникающей до 2 м в грунт земли.

Так как магнитное поле поисковой катушки пронизывает измерительную катушку, то основной технической проблемой индукционных металлодетекторов является компенсация сигналов, наводимых этим полем в измерительной катушке. Компенсация сигналов в измерительной катушке достигается за счет взаимно перпендикулярного пространственного расположения осей поисковой и измерительной катушек, использования компенсационной катушки с параметрами, идентичными параметрам измерительной, но с противоположным направлением намотки провода, а также путем соответствующей обработки сигналов.

Характеристики сигнала в измерительной катушке зависят от размеров токопроводящей поверхности объекта, ее электропроводности, магнитной проницаемости материала и частоты поля. Выделение очень слабых сигналов, наводимых в измерительной катушке металлодетектора вторичным полем мелких металлических предметов, на фоне различных помех, а также компенсация помех требует достаточно сложных алгоритмов оптимальной обработки, реализуемых микропроцессорной техникой.

Для обнаружения закладок применяются в основном ручные металлодетекторы. Измерительная и поисковая катушки в них могут выполняться в виде торроида диаметром порядка 140-150 мм, укрепленного на корпусе ручки (АКА 7202) или непосредственно в корпусе металлодетектора («Минискан»). Металлодетектор имеет звуковой и световой индикаторы, регулятор настройки чувстви тельности; питание ручных металлодетекторов от химических источников тока. Проблема автоматической подстройки коэффициента усиления металлодетектора под параметры среды решается микропроцессором. Максимальная чувствительность металлодетектора характеризуется обломком иглы длиной 5 мм, находящимся в поле действия измерительной катушки. Вес ручных металлодетекторов невелик: от 260 г до нескольких кг.

Для интерскопии предметов непонятного назначения применяют переносные рентгеновские установки. Переносные рентгеновские установки бывают двух видов:

• флюороскопы с отображением изображений на экране просмотровой приставки;

• рентгенотелевизионные установки.

Переносные флюороскопы состоят из излучателя, пульта дистанционного управления, просмотровой приставки с люминесцентным экраном, аккумуляторного блока, зарядного устройства, соединительных кабелей и сумок для переноса установки (транспортной упаковки). Обследуемый предмет размещается между излучателем и просмотровой приставкой на расстоянии около 50 см от излучателя и вплотную к просмотровой приставке.

Проникающая способность рентгеновских лучей пропорциональна анодному напряжению на рентгеновской трубке, которое достигает у некоторых переносных флюороскопов 250 кВ. Например, досмотровая рентгеновская установка «Шмель-90/K» фирмы «Флэш Электронике» для обеспечения высокой проникающей способности имеет анодное напряжение 90 кВ. Она просвечивает стальную пластину толщиной 2 мм, бетонную стену толщиной до 100 мм, позволяет различить за преградой из алюминия толщиной 3 мм две медные проволоки диаметром 0,2 мм, расположенные на расстоянии 1 мм друг от друга. Рабочее поле экрана просмотровой приставки - круг диаметром 255 мм.

С целью повышения безопасности оператора в современных переносных рентгеновских флюроскопах (например, в флюороскопе Яуза-1 фирмы «Novo») используется люминесцентный экран с запоминанием, позволяющий рассматривать изображение после выключения высокого напряжения. В состав таких комплексов включается специализированный термоконтейнер для стирания изображения с люминесцентных экранов.

Уменьшение мощности рентгеновского излучения и масса-га-баритных характеристик установки достигается усилением яркости изображения экрана. Переносной рентгеновский флюороскоп ФП-1 («Спектр») с коэффициентом усиления яркости экрана не менее 30000 имеет малые размеры (270 х 240 х 920 мм) и массу (3 кг). В то же время размеры его флюороскопического экрана составляют 250 х 250 мм. Дополнительно к нему поставляется фото- или видеоприставка для документирования изображений.

Для просвечивания тонких предметов с неметаллическими корпусами применяют установки с радиоактивными изотопами низкой активности. Такие установки компактны, просты в управлении и безопасны. Например, рентгеновская микроустановка РК-990 с габаритами 220 х 210 мм и массой 1,7 кг просвечивает объект с размерами до 63 х 87 мм.

В рентгенотелевизионных установках теневое изображение преобразуется в телевизионное изображение на экране удаленного от излучателя монитора. Например, рентгеновский аппарат «Шмель-экспресс» обеспечивает возможность наблюдения изображения объекта как на экране монитора, удаленного до 2 м от рентгеновской установки, так и на экране просмотровой приставки комплекса «Шмель-90К». Размер экрана рентгенотелевизионного преобразователя 360 х 480 мм. Эта установка позволяет запоминать до 1000 изображений и обеспечивает информационно-техническое сопряжение с ПЭВМ.

Применение рентгеновских установок для исследования закладных устройств ограничивается сравнительно их высокой стоимостью.

Нелинейные локаторы | Инженерно-техническая защита информации | Средства контроля помещений на отсутствие закладных устройств


Инженерно-техническая защита информации



Новости за месяц

  • Апрель
    2019
  • Пн
  • Вт
  • Ср
  • Чт
  • Пт
  • Сб
  • Вс