Энергетическое скрытие акустических сигналов в соответствии с рассмотренными методами защиты информации обеспечивается путем применения способов и средств, уменьшающих энергию носителя на входе акустического приемника злоумышленника или увеличивающих энергию помех.

Простейшим способом является уменьшение громкости речи во время разговора на конфиденциальные темы. Однако это возможно, если количество собеседников мало, а уровень шумов невелик. Громкость акустического сигнала уменьшают путем звукоизоляции, звукопоглощения и глушения звука. Для повышения уровня акустических помех применяют активные средства - генераторы акустических помех.

Звукоизоляция обеспечивает локализацию акустических сигналов в замкнутом пространстве внутри контролируемых зон. Основное требование к ней - за пределами этой зоны соотношение сигнал/помеха не должно превышать максимально-допусти-мые значения, исключающие добывание информации злоумышленниками. Звукоизоляция достигается за счет отражения и поглощения акустической волны.

Плоский слой звукопоглощающего материала облицовок устанавливается на жестком основании, которое крепится непосредственно или с воздушным промежутком на поверхности ограждения, к потолку или стенам. Для дополнительного звукопоглощения и уменьшения числа переотражений от ограждений с целью снижения времени реверберации используются штучные звукопог-лотители. Они представляют собой одно- или многослойные объемные звукопоглощающие конструкции (в виде куба, параллелепипеда, конуса), подвешиваемые к потолку помещения. Размеры граней штучных звукопоглотителей составляют 40-400 см.

Каналы вентиляции и систем кондиционирования также способствуют утечке информации из помещения. Передача звука через нетиляционный канал происходит по воздуху, находящемуся в полос ги канала, и по элементам его конструкции. Наиболее эф-фектинпоЙ мерой предотвращения утечки информации через воздухопроводы является глушение звука.

Глушсиие звука достигается путем интенсивного поглощения энергии акустической волны при распространении ее в специальной конструкции, называемой глушителем. Например, в момент выхода газов из цилиндра двигателя автомобиля в выходном коллекторе создается акустическая волна большой интенсивности. Она направляется по трубе в глушитель, в котором, проходя через многочисленные преграды, теряет энергию и выходит из выхлопной трубы с энергией, сравнимой с энергией акустического фона. При прогорании глушителя или его съеме, что делают иногда на спортивных автомобилях для повышения их мощности, работа двигателя сопровождается интенсивным шумом.

Громкость звука, воспринимаемого человеком, зависит не только от его собственной интенсивности, но и от других звуков, действующих одновременно на барабанную перепонку уха. В силу психофизиологических особенностей восприятия звука человеком интенсивность маскирующих звуков обладает асимметричностью. Она проявляется в том, что маскирующий звук оказывает относительно небольшое влияние на тоны маскируемого звука ниже его собственной частоты, но сильно затрудняет восприятие более высоких звуков. Поэтому для маскировки акустических сигналов эффективны низкочастотные акустические шумовые сигналы. Причем речеподобными помехами обеспечивается более эффективное зашумление, чем «белым» шумом. Это объясняется большей восприимчивостью слухового анализатора к речеподобным звукам, чем к акустическому шуму с равномерным спектром.

Следует отметить, что акустическое зашумление помещения обеспечивает эффективную защиту информации в нем, если акустический генератор расположен к акустическому приемнику злоумышленника ближе, чем источник информации. Например, когда подслушивание возможно через дверь или открытое окно, то акустический.генератор целесообразно разместить возле двери или на подоконнике окна. Если неизвестно местонахождение акустического приемника злоумышленника, например закладного устройства, то размещение акустического генератора между говорящи ми людьми, как рекомендуют некоторые фирмы, не гарантирует надежную защиту информации. Кроме того, повышение уровня шума вынуждает собеседников к более громкой речи, что создает дискомфорт и снижает эффект от зашумления.

Снижение дискомфорта, вызванного акустическими шумами в помещении, достигается использованием специальных переговорных телефонов и акустических приемников, в которых устраняется акустический шум.

Более эффективным и активным универсальным способом защиты информации, передаваемым структурным звуком, является вибрационное зашумление. Шум в звуковом диапазоне в твердых телах создают пьезокерамические вибраторы акустического генератора, прикрепляемые (приклеиваемые) к поверхности зашумляемого ограждения (окна, стены, потолка и др.) или твердотельного звукопровода (батареи отопления, трубы и др.). Так как уровень структурного шума, создаваемого генератором, выше уровня речевого сигнала в твердых телах, но ниже уровня слышимости, то вибрационное зашумление целесообразно применять во всех случаях, когда существует возможность утечки с помощью структурного звука.

Пассивное энергетическое скрытие акустической информации от подслушивания лазерным микрофоном заключается в ослаблении энергии акустической волны, воздействующей на оконное стекло. Оно достигается использованием штор и жалюзей, а также двойных оконных рам. Активные способы энергетического скрытия акустической информации предусматривают применение генераторов шумов в акустическом диапазоне, датчики которых приклеиваются к стеклу и вызывают его колебание по случайному закону с амплитудой, превышающей амплитуду колебаний стекла от акустической волны.

Структурное скрытие речевой информации в каналах связи | Инженерно-техническая защита информации | Обнаружение и подавление закладных устройств


Инженерно-техническая защита информации



Новости за месяц

  • Декабрь
    2019
  • Пн
  • Вт
  • Ср
  • Чт
  • Пт
  • Сб
  • Вс