Сделав небольшое отступление для ознакомления с пирамидальной сортировкой, пора вернуться к очередям по приоритету и рассмотреть задачу расширения реализованной нами структуры данных.

Мы разработали структуру данных, позволяющую выполнять две основные операции: постановку в очередь, обеспечивающую добавление элемента в структуру, и исключение из очереди, которая возвращает элемент структуры с наивысшим приоритетом (попутно мы рассмотрели определение приоритета за счет использования внешней функции сравнения). Полученную структуру мы назвали очередью по приоритету.

Однако структуры операционных систем, такие как очереди по приоритету потоков или очереди на печать, позволяют выполнять еще две операции: удалять элемент из очереди и возвращать его, независимо от позиции в очереди (элемент не обязательно должен быть наибольшим), а также изменять приоритет любого элемента в очереди.

При работе с очередью на печать операция удаления позволяет отменять задание на печать документа, печать которого больше не требуется, или удалять печатное задание из одной очереди и включать его в другую (например, если принтер, связанный с первой очередью, занят печатью крупного отчета). При работе с очередью по приоритету потоков можно временно повысить приоритет потока для повышения вероятности возобновления выполнения, когда операционная система в следующий раз решит изменить очередность обработки потоков.

На первый взгляд, реализация этих операций за счет использования сортирующего дерева может показаться затруднительной. Однако рассмотрим проблему подробнее. Классу очереди по приоритету нужно было бы передать ссылку на элемент, расположенный где-то в очереди, чтобы его можно было удалить или изменить его приоритет. Как найти элемент в очереди? Это один из тех случаев, когда "свободная" сортировка сортирующего дерева работает против нас. Единственным возможным методом поиска на этом этапе кажется последовательный поиск, но он выполняется достаточно медленно. После того как элемент найден, мы должны либо удалить его, либо изменить его приоритет, а затем восстановить полноту или пирамидальность сортирующего дерева, либо же оба свойства.

Завершение пирамидальной сортировки || Оглавление || Восстановление свойства пирамидальное


Фундаментальные алгоритмы и структуры данных в Delphi



Новости за месяц

  • Июль
    2019
  • Пн
  • Вт
  • Ср
  • Чт
  • Пт
  • Сб
  • Вс