Первый алгоритм, с которым сталкиваются все программисты при изучении азов программирования, - это пузырьковая сортировка (bubble sort). Как это ни прискорбно, но из всех известных алгоритмов пузырьковая сортировка является самой медленной. Хотя, возможно, ее легче запрограммировать, чем другие алгоритмы сортировки (хотя и не намного).

Пузырьковая сортировка работает следующим образом. Разложите ваши карты (помните, что их всего 13?). Посмотрите на двенадцатую и тринадцатую карту. Если двенадцатая карта старше тринадцатой, поменяйте их местами. Теперь перейдите к одиннадцатой и двенадцатой картам. Если одиннадцатая карта старше двенадцатой, поменяйте их местами. То же сделайте и для пар (10, 11), (9, 10) и т.д., пока не дойдете до первой и второй карты. После первого прохода по всей колоде туз окажется на первой позиции. Фактически когда вы "зацепились" за туз он "выплыл" на первую позицию. Теперь вернитесь к двенадцатой и тринадцатой картам. Выполните описанный выше процесс, на этот раз остановив-щись на второй и третьей картах. Обратите внимание, что вам удалось переместить двойку на вторую позицию. Продолжайте процесс сортировки, уменьшая с каждым новым циклом количество просматриваемых карт и поступая так до тех пор, пока вся колода не будет отсортирована.

Полагаем, вы согласитесь с тем, что сортировка была довольно-таки утомительной. При реализации алгоритма на языке Pascal "утомительность" выражается медленной скоростью работы. Тем не менее, существует оцин простой метод оптимизации пузырьковой сортировки: если при выполнении очередного прохода не было выполнено ни одной перестановки, значит, карты уже отсортированы в требуемом порядке.

Листинг 5.4. Пузырьковая сортировка

procedure TDBubbleSort (aList : TList;
aFirst : integer;
aLast : integer;
aCompare : TtdCompareFunc);
var
i, j : integer;
Temp : pointer;
Done : boolean;
begin
TDValidateListRange(aList, aFirst, aLast, 'TDBubbleSort');
for i := aFirst to pred(aLast) do begin Done := true;
for j : = aLast downto succ ( i ) do if (aCompare(aList.ListA[j], aList.ListA) < 0) then begin
{переставить j-ый и (j - 1)-ый элементы)
Temp : = aList. ListA [ j ] ;
aList.ListA[j] : * aList.ListA[j-1];
aList.ListA[j-1] :=Temp;
Done := false;
end;
if Done then Expend;
end;

Пузырьковая сортировка принадлежит к алгоритмам класса 0(п2). Как видите, в реализации присутствуют два цикла: внешний и внутренний, при этом количество выполнений каждого цикла зависит от количества элементов в массиве. При первом выполнении внутреннего алгоритма будет произведено п - 1 сравнений, при втором - п - 2, при третьем - п - 3 и т.д. Всего будет п - 1 таких циклов, таким образом, общее количество сравнений составит:

(и-1) + (л-2)+ ... + 1

Приведенную сумму можно упростить до п (п - 1)/2 или (я2 - п)12. Другими словами, получаем 0(п2). Количество перестановок вычислить несколько сложнее, но в худшем случае (когда элементы в исходном наборе были отсортированы в обратном порядке) количество перестановок будет равно количеству сравнений, т.е. снова получаем 0(п2).

Небольшая оптимизация метода пузырьковой сортировки, о которой мы говорили чуть выше, означает, что если элементы в наборе уже отсортированы в нужном порядке, пузырьковая сортировка будет выполняться очень быстро: будет выполнен всего один проход по списку, не будет сделано ни одной перестановки и выполнение алгоритма завершится, (п -1) сравнений и ни одной перестановки говорят о том, что в лучшем случае быстродействие пузырьковой сортировки равно 0(п).

Одна большая проблема, связанная с пузырьковой сортировкой, да и честно говоря, со многими другими алгоритмами, состоит в том, что переставляются только соседние элементы. Если элемент с наименьшим значением оказывается в самом конце списка, он будет меняться местами с соседними элементами до тех пор, пока он не достигнет первой позиции.

Пузырьковая сортировка относится к нестабильным алгоритмам, поскольку из двух элементов с равными значениями первым в отсортированном списке будет тот, который находился в исходном списке дальше от начала. Если изменить тип сравнения на "меньше чем" или "равен", а не просто "меньше", тогда пузырьковая

сортировка станет устойчивой, но количество перестановок увеличится, и введенная нами оптимизация не даст запланированного выигрыша в скорости.

Самые медленные алгоритмы сортировки || Оглавление || Шейкер-сортировка


Фундаментальные алгоритмы и структуры данных в Delphi



Новости за месяц

  • Июль
    2019
  • Пн
  • Вт
  • Ср
  • Чт
  • Пт
  • Сб
  • Вс