Преимущества связывания достаточно очевидны. Во-первых, в таблице, использующей связывание, никогда не возникнет ситуация нехватки места. Мы сколько угодно можем продолжать добавлять элементы в хеш-таблицу, и при этом будет происходить только увеличение связных списков. Реализация вставки и удаления крайне проста - действительно, большая часть работы была проделана в главе 3.

Несмотря на простоту, связывание имеет один важный недостаток. Он заключается в том, что никогда не возникает ситуация нехватки места! Проблема в том, что длина связных списков все больше и больше увеличивается. При этом время поиска в связных списках также увеличивается, а поскольку любая имеющая смысл операция, которую можно выполнять с хеш-таблицами, предполагает поиск элемента (вспомните пресловутый метод 1Л11пс1ехО£ класса хеш-таблиц с линейным зондированием), большая часть рабочего времени будет тратиться на поиск в связных списках.

Стоит отметить еще ряд обстоятельств. При использовании алгоритма разрешения конфликтов линейного зондирования мы сознательно старались минимизировать количество выполняемых зондирований, расширяя хеш-таблицу, когда ее коэффициент загрузки начинал превышать две третьих. Как следует из результатов анализа, в этой ситуации для успешного поиска должно в среднем требоваться два зондирования, а для безрезультатного - пять. Подумайте, что означает зондирование. По существу, это сравнение ключей. Весь смысл применения хеш-таблицы заключался в уменьшении количества сравнений ключей до одного или двух. В противном случае вполне можно было бы выполнить бинарный поиск в отсортированном массиве строк. Что ж, при использовании связывания для разрешения конфликтов каждый раз, когда мы спускаемся по связному списку, пытаясь найти конкретный ключ, для этого мы используем сравнение. Если прибегнуть к терминологии метода с открытой адресацией, то каждое сравнение можно сравнить с "зондированием". Так сколько же зондирований в среднем требуется для успешного поиска при использовании связывания? Для алгоритма связывания коэффициент загрузки по-прежнему вычисляется как число элементов, деленное на число ячеек (хотя на этот раз оно может иметь значение больше 1.0), и его можно представить средней длиной связных списков, присоединенных к ячейкам хеш-таблицы. Если коэффициент загрузки равен F, то среднее число зондирований для успешного поиска составит FI2. Для безрезультатного поиска среднее число зондирований равно F. (Эти результаты справедливы для несортированных связных списков. Если бы связные списки были отсортированы, значения были бы меньше - исходя из теории, оба значения нужно разделить на log2(F))- Как это ни удивительно, хотя на первый взгляд связывание кажется более удачным решением, нежели открытая адресация, при более внимательном рассмотрении этот метод оказывается не столь уж хорошим.

Суть всех выше приведенных рассуждений состоит в том, что в идеале необходимо увеличивать также хеш-таблицу, которая использует метод связывания для разрешения конфликтов. Использование методологии перемещения наиболее недавно использованных элементов в верхнюю часть соответствующих связных списков также обеспечивает существенный выигрыш в производительности.

Разрешение конфликтов посредством связывания || Оглавление || Класс связных хеш-таблиц


Фундаментальные алгоритмы и структуры данных в Delphi



Новости за месяц

  • Декабрь
    2019
  • Пн
  • Вт
  • Ср
  • Чт
  • Пт
  • Сб
  • Вс